Affordable Access

The local environment of Cu+ in Cu-Y zeolite and its relationship to the synthesis of dimethyl carbonate.

Authors
Type
Published Article
Journal
The Journal of Physical Chemistry B
1520-5207
Publisher
American Chemical Society
Publication Date
Volume
110
Issue
24
Pages
11654–11664
Identifiers
PMID: 16800460
Source
Medline
License
Unknown

Abstract

Cu-exchanged Y zeolite was investigated in order to determine the location of the copper cations relative to the zeolite framework and to determine which Cu cations are active for the oxidative carbonylation of methanol to dimethyl carbonate (DMC). Cu-Y zeolite was prepared by vapor-phase exchange of H-Y with CuCl. The oxidation state, local coordination, and bond distances of Al and Cu were determined using Al K-edge and Cu K-edge X-ray absorption spectroscopy (XAS). Complimentary information was obtained by H2 temperature-programmed reduction and by in-situ infrared spectroscopy. Cu-Y has a Cu/Al ratio of unity and very little occluded CuCl. The average Al-O and Al-Cu bond distances are 1.67 angstroms and 2.79 angstroms, respectively, and the average Cu-O and Cu-Si(Al) bond distances are 1.99 angstroms and 3.13 angstroms, respectively. All of the Cu exchanged is present as Cu+ in sites I', II, and III'. Cu-Y is active for the oxidative carbonylation of methanol, and at low reactant contact time produces DMC as the primary product. With increasing reactant contact time, DMC formation decreases in preference to the formation of dimethoxy methane (DMM) and methylformate (MF). The formation of DMM and MF is attributed to the hydrogenation of DMC and the hydrogenolysis of DMM, respectively. Observation of the catalyst under reaction conditions reveals that most of the copper cations remain as Cu+, but some oxidation of Cu+ to Cu2+ does occur. It is also concluded that only those copper cations present in site II and III' positions are accessible to the reactants, and hence are catalytically active. The dominant adsorbed species on the surface are methoxy groups, and adsorbed CO is present as a minority species. The relationship of these observations to the kinetics of DMC synthesis is discussed.

Statistics

Seen <100 times