Affordable Access

deepdyve-link
Publisher Website

The LiNiO2 Cathode Active Material: A Comprehensive Study of Calcination Conditions and their Correlation with Physicochemical Properties Part II. Morphology

Authors
  • Riewald, Felix1
  • Kurzhals, Philipp
  • Bianchini, Matteo
  • Sommer, Heino
  • Janek, Jürgen
  • Gasteiger, Hubert A.1
  • 1 Technical University of Munich, Germany , (Germany)
Type
Published Article
Journal
Journal of The Electrochemical Society
Publisher
The Electrochemical Society
Publication Date
Feb 01, 2022
Volume
169
Issue
2
Identifiers
DOI: 10.1149/1945-7111/ac4bf3
Source
ioppublishing
Keywords
Disciplines
  • Batteries and Energy Storage
License
Unknown

Abstract

A better understanding of the cathode active material (CAM) plays a crucial role in the improvement of lithium-ion batteries. We have previously reported the structural properties of the model cathode material LiNiO2 (LNO) in dependence of its calcination conditions and found that the deviation from the ideal stoichiometry in LiNiO2 (Ni excess) shows no correlation to the 1st cycle capacity loss. Rather, the morphology of LNO appears to be decisive. As CAM secondary agglomerates fracture during battery operation, the surface area in contact with the electrolyte changes during cycle life. Thus, particle morphology and especially the primary particle size become critical and are analyzed in detail in this report for LNO, using an automated SEM image segmentation method. It is shown that the accessible surface area of the pristine CAM powder measured by physisorption is close to the secondary particle geometric surface area. The interface area between CAM and electrolyte is measured by an in situ capacitance method and approaches a value proportional to the estimated primary particle surface area determined by SEM image analysis after just a few cycles. This interface area is identified to be the governing factor determining the 1st cycle capacity loss and long-term cycling behavior.

Report this publication

Statistics

Seen <100 times