Affordable Access

Light Field Image Compression and Compressive Acquisition

Authors
  • Hawary, Fatma
Publication Date
May 29, 2019
Source
Kaleidoscope Open Archive
Keywords
Language
English
License
Unknown
External links

Abstract

By capturing a scene from several points of view, a light field provides a rich representation of the scene geometry that brings a variety of novel post-capture applications and enables immersive experiences. The objective of this thesis is to study the compressibility of light field contents in order to propose novel solutions for higher-resolution light field imaging. Two main aspects were studied through this work. The compression performance on light fields of the actual coding schemes still being limited, there is need to introduce more adapted approaches to better describe the light field structures. We propose a scalable coding scheme that encodes only a subset of light field views and reconstruct the remaining views via a sparsity-based method. A residual coding provides an enhancement to the final quality of the decoded light field.Acquiring very large-scale light fields is still not feasible with the actual capture and storage facilities, a possible alternative is to reconstruct the densely sampled light field from a subset of acquired samples. We propose an automatic reconstruction method to recover a compressively sampled light field, that exploits its sparsity in the Fourier domain. No geometry estimation is needed, and an accurate reconstruction is achieved even with very low number of captured samples. A further study is conducted for the full scheme including a compressive sensing of a light field and its transmission via the proposed coding approach. The distortion introduced by the different processing is measured. The results show comparable performances to depth-based view synthesis methods.

Report this publication

Statistics

Seen <100 times