Affordable Access

Access to the full text

Life Cycle Assessment of Solar Façade Concepts Based on Transparent Insulation Materials

Authors
  • struhala, karel
  • čekon, miroslav
  • slávik, richard
Publication Date
Nov 15, 2018
Identifiers
DOI: 10.3390/su10114212
OAI: oai:mdpi.com:/2071-1050/10/11/4212/
Source
MDPI
Keywords
Language
English
License
Green
External links

Abstract

Contemporary architecture and construction industry are trying to cope with increasing requirements concerning energy efficiency and environmental impacts. One of the available options is the active utilization of energy gains from the environment, specifically solar energy gains. These gains can be utilized by, for example, solar walls and facades. The solar fa&ccedil / ade concept has been under development for more than a century. However, it has not achieved widespread use for various reasons. Rather recently the concept was enhanced by the application of transparent insulation materials that have the potential to increase the efficiency of such fa&ccedil / ades. The presented study evaluates the environmental efficiency of 10 solar fa&ccedil / ade assemblies in the mild climate of the Czech Republic, Central Europe. The evaluated fa&ccedil / ade assemblies combine the principles of a solar wall with transparent insulation based on honeycomb and polycarbonate panels. The study applies Life-Cycle Assessment methodology to the calculation of environmental impacts related to the life cycle of the evaluated assemblies. The results indicate that even though there are several limiting factors, fa&ccedil / ade assemblies with transparent insulation have lower environmental impacts compared to a reference assembly with standard thermal insulation. The highest achieved difference is approx. 84% (in favor of the assembly with transparent insulation) during a modelled 50-year fa&ccedil / ade assembly service life.

Report this publication

Statistics

Seen <100 times