# Lie symmetry analysis and invariant solutions of 3D Euler equations for axisymmetric, incompressible, and inviscid flow in the cylindrical coordinates

Authors
• 1 Zagazig University, Zagazig, Egypt , Zagazig (Egypt)
• 2 Anand International College of Engineering, Jaipur, 302012, India , Jaipur (India)
• 3 Benha University, Benha, 13512, Egypt , Benha (Egypt)
Type
Published Article
Journal
Publisher
Springer International Publishing
Publication Date
Nov 06, 2021
Volume
2021
Issue
1
Identifiers
DOI: 10.1186/s13662-021-03637-w
Source
Springer Nature
Keywords
Disciplines
• Difference Equations, Special Functions and Orthogonal Polynomials
Through the Lie symmetry analysis method, the axisymmetric, incompressible, and inviscid fluid is studied. The governing equations that describe the flow are the Euler equations. Under intensive observation, these equations do not have a certain solution localized in all directions (r,t,z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(r,t,z)$\end{document} due to the presence of the term 1r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\frac{1}{r}$\end{document}, which leads to the singularity cases. The researchers avoid this problem by truncating this term or solving the equations in the Cartesian plane. However, the Euler equations have an infinite number of Lie infinitesimals; we utilize the commutative product between these Lie vectors. The specialization process procures a nonlinear system of ODEs. Manual calculations have been done to solve this system. The investigated Lie vectors have been used to generate new solutions for the Euler equations. Some solutions are selected and plotted as two-dimensional plots.