Affordable Access

Leaf volatile compounds of seven citrus somatic tetraploid hybrids sharing willow leaf mandarin (Citrus deliciosa Ten.) as their common parent.

Authors
Type
Published Article
Journal
Journal of agricultural and food chemistry
Publication Date
Volume
51
Issue
20
Pages
6006–6013
Identifiers
PMID: 13129309
Source
Medline
License
Unknown

Abstract

Volatile compounds were extracted by a pentane/ether (1:1) mixture from the leaves of seven citrus somatic tetraploid hybrids sharing mandarin as their common parent and having lime, Eurêka lemon, lac lemon, sweet orange, grapefruit, kumquat, or poncirus as the other parent. Extracts were examined by GC-MS and compared with those of their respective parents. All hybrids were like their mandarin parent, and unlike their nonmandarin parents, in being unable to synthesize monoterpene aldehydes and alcohols. The hybrids did retain the ability, although strongly reduced, of their nonmandarin parents to synthesize sesquiterpene hydrocarbons, alcohols, and aldehydes. These results suggest that complex forms of dominance in the mandarin genome determine the biosynthesis pathways of volatile compounds in tetraploid hybrids. A down-regulation of the biosynthesis of methyl N-methylanthranilate, a mandarin-specific compound, originates from the genomes of the nonmandarin parents. Statistical analyses showed that all of the hybrids were similar to their common mandarin parent in the relative composition of their volatile compounds.

Statistics

Seen <100 times