Affordable Access

Law of Large Numbers Limits for Many Server Queues

Publication Date
Submission Date
External links


This work considers a many-server queueing system in which customers with i.i.d., generally distributed service times enter service in the order of arrival. The dynamics of the system is represented in terms of a process that describes the total number of customers in the system, as well as a measure-valued process that keeps track of the ages of customers in service. Under mild assumptions on the service time distribution, as the number of servers goes to infinity, a law of large numbers (or fluid) limit is established for this pair of processes. The limit is characterised as the unique solution to a coupled pair of integral equations, which admits a fairly explicit representation. As a corollary, the fluid limits of several other functionals of interest, such as the waiting time, are also obtained. Furthermore, in the time-homogeneous setting, the fluid limit is shown to converge to its equilibrium. Along the way, some results of independent interest are obtained, including a continuous mapping result and a maximality property of the fluid limit. A motivation for studying these systems is that they arise as models of computer data systems and call centers.

There are no comments yet on this publication. Be the first to share your thoughts.


Seen <100 times