Affordable Access

Access to the full text

Lasserre Hierarchy for Graph Isomorphism and Homomorphism Indistinguishability

  • Roberson, David E.
  • Seppelt, Tim
Published Article
Publication Date
Sep 19, 2023
Submission Date
Feb 21, 2023
DOI: 10.4230/LIPIcs.ICALP.2023.101
External links


We show that feasibility of the $t^\text{th}$ level of the Lasserre semidefinite programming hierarchy for graph isomorphism can be expressed as a homomorphism indistinguishability relation. In other words, we define a class $\mathcal{L}_t$ of graphs such that graphs $G$ and $H$ are not distinguished by the $t^\text{th}$ level of the Lasserre hierarchy if and only if they admit the same number of homomorphisms from any graph in $\mathcal{L}_t$. By analysing the treewidth of graphs in $\mathcal{L}_t$ we prove that the $3t^\text{th}$ level of Sherali--Adams linear programming hierarchy is as strong as the $t^\text{th}$ level of Lasserre. Moreover, we show that this is best possible in the sense that $3t$ cannot be lowered to $3t-1$ for any $t$. The same result holds for the Lasserre hierarchy with non-negativity constraints, which we similarly characterise in terms of homomorphism indistinguishability over a family $\mathcal{L}_t^+$ of graphs. Additionally, we give characterisations of level-$t$ Lasserre with non-negativity constraints in terms of logical equivalence and via a graph colouring algorithm akin to the Weisfeiler--Leman algorithm. This provides a polynomial time algorithm for determining if two given graphs are distinguished by the $t^\text{th}$ level of the Lasserre hierarchy with non-negativity constraints.

Report this publication


Seen <100 times