Affordable Access

Large herbivores as a driving force of woodland-grassland cycles : the mutual interactions between the population dynamics of large herbivores and vegetation development in a eutrophic wetland

Authors
  • Cornelissen, Perry
Publication Date
Jan 01, 2017
Source
Wageningen University and Researchcenter Publications
Keywords
Language
English
License
Unknown
External links

Abstract

This thesis examines the mutual interactions between the population dynamics of large herbivores and wood-pasture cycles in eutrophic wetlands. Therefore, habitat use and population dynamics of large herbivores, the effects of large herbivores on vegetation development, and the mutual interactions between vegetation development and herbivore population dynamics were studied in the eutrophic wetland the Oostvaardersplassen. At the Oostvaardersplassen cattle, horses and red deer were introduced in a fenced area with no predators, and population numbers are bottom-up controlled by food supply. The study showed that high densities of cattle, horses and red deer were able to break down woody vegetation and create grasslands. As the populations of large herbivores increased, the amount of the preferred grass available per animal decreased. This forced the large herbivores to use other food plants in other vegetation types, such as scrub, and transforming these into grasslands. In this way, the large herbivores facilitated high numbers of geese. As geese can clip the grass very short (<2 cm), they forced the large herbivores even more to forage in alternative vegetation types. Cattle, the largest herbivore in the system, were the first to experience the negative consequences of this strong competition, and their numbers declined. This raises the question whether an assemblage of bottom-up regulated populations of cattle, horses and red deer, or other large herbivores, can sustainably coexist under these circumstances. The results of our modelling study and experiences in the field suggest that resource partitioning may be a more reliable mechanism for long term coexistence than temporal variability due to climatic extremes or disease outbreaks. The best way to provide opportunities for resource partitioning in the Oostvaardersplassen is to enlarge the area and connect it to other reserves in order to increase the heterogeneity of the grazed system. Although the results of our model suggest that weather variability and presence of geese gave minor opportunities for the coexistence of large herbivores, both factors were necessary for creating windows of opportunity for the establishment of thorny shrubs. Weather variability creates strong reductions of the large herbivore populations while geese influence the maximum and minimum numbers, which are lower when geese are present. The effects of geese on the minimum numbers are small, but apparently sufficient to make the wood-pasture cycle operate. This raises another question whether a large predator, such as the wolf, could have similar effects on these ecosystems as the geese in the model. The impact of geese combined with a possible positive effect of wolves on wood-pasture cycles could perhaps increase the frequency of the windows of opportunity and increase the survival of established thorny shrubs. Until now, we have seen that a few conditions for the wood-pasture cycle are met by the herbivores. However, a few important requirements are not satisfied: (a) a temporary reduction of large herbivore numbers allowing the establishment of light demanding thorny shrubs and the development of thorny scrubland within the created grasslands; (b) the establishment of palatable trees within these thorny scrubs; (c) the formation of closed canopies which shade out the shrubs and lead to unprotected groups of trees and groves. This means that we still cannot conclude if the large herbivores are a driving force for the whole cycle in a highly productive environment. As long as we have not experienced a complete wood-pasture cycle in the Oostvaardersplassen or any other area, it remains to be seen what will happen in the future. Whatever the outcome will be, the results of our study suggest that some adjustments would benefit the Oostvaardersplassen-system such as increasing heterogeneity through connecting the area with other large nature reserves. This will not only increase opportunities for resource and space partitioning and thus increase opportunities for the coexistence of the large herbivores, but also for wood-pasture cycles and increased biodiversity.

Report this publication

Statistics

Seen <100 times