Affordable Access

Knowledge discovery in biology and biotechnology texts: a review of techniques, evaluation strategies, and applications.

Authors
Type
Published Article
Journal
Critical reviews in biotechnology
Publication Date
Volume
25
Issue
1-2
Pages
31–52
Identifiers
PMID: 15999851
Source
Medline

Abstract

Arguably, the richest source of knowledge (as opposed to fact and data collections) about biology and biotechnology is captured in natural-language documents such as technical reports, conference proceedings and research articles. The automatic exploitation of this rich knowledge base for decision making, hypothesis management (generation and testing) and knowledge discovery constitutes a formidable challenge. Recently, a set of technologies collectively referred to as knowledge discovery in text (KDT) has been advocated as a promising approach to tackle this challenge. KDT comprises three main tasks: information retrieval, information extraction and text mining. These tasks are the focus of much recent scientific research and many algorithms have been developed and applied to documents and text in biology and biotechnology. This article introduces the basic concepts of KDT, provides an overview of some of these efforts in the field of bioscience and biotechnology, and presents a framework of commonly used techniques for evaluating KDT methods, tools and systems.

There are no comments yet on this publication. Be the first to share your thoughts.

Statistics

Seen <100 times
0 Comments