Affordable Access

Kinetic peculiarities of human tissue kallikrein: 1--substrate activation in the catalyzed hydrolysis of H-D-valyl-L-leucyl-L-arginine 4-nitroanilide and H-D-valyl-L-leucyl-L-lysine 4-nitroanilide; 2--substrate inhibition in the catalyzed hydrolysis of N alpha-p-tosyl-L-arginine methyl ester.

Authors
  • 1
Type
Published Article
Journal
Archives of biochemistry and biophysics
Publication Date
Volume
400
Issue
1
Pages
7–14
Identifiers
PMID: 11913965
Source
Medline

Abstract

Hydrolysis of D-valyl-L-leucyl-L-lysine 4-nitroanilide (1), D-valyl-L-leucyl-L-arginine 4-nitroanilide (2), and N alpha-p-tosyl-L-arginine methyl ester (3) by human tissue kallikrein was studied throughout a wide range of substrate concentrations. At low substrate concentrations, the hydrolysis followed Michaelis-Menten kinetics but, at higher substrate concentrations, a deviation from Michaelis-Menten behavior was observed. With the nitroanilides, a significant increase in hydrolysis rates was observed, while with the ester, a significant decrease in hydrolysis rates was observed. The results for substrates (1) and (3) can be accounted for by a model based on the hypothesis that a second substrate molecule binds to the ES complex to produce a more active or an inactive SES complex. The deviation observed for substrate (2) can be explained as a bimolecular reaction between the enzyme-substrate complex and a free substrate molecule.

There are no comments yet on this publication. Be the first to share your thoughts.

Statistics

Seen <100 times
0 Comments