Affordable Access

Kinetic equations with Maxwell boundary conditions

Authors
Type
Preprint
Publication Date
Submission Date
Source
arXiv
License
Yellow
External links

Abstract

We prove global stability results of {\sl DiPerna-Lions} renormalized solutions for the initial boundary value problem associated to some kinetic equations, from which existence results classically follow. The (possibly nonlinear) boundary conditions are completely or partially diffuse, which includes the so-called Maxwell boundary conditions, and we prove that it is realized (it is not only a boundary inequality condition as it has been established in previous works). We are able to deal with Boltzmann, Vlasov-Poisson and Fokker-Planck type models. The proofs use some trace theorems of the kind previously introduced by the author for the Vlasov equations, new results concerning weak-weak convergence (the renormalized convergence and the biting $L^1$-weak convergence), as well as the Darroz\`es-Guiraud information in a crucial way.

Statistics

Seen <100 times