Affordable Access

Coping with Byzantine Processes and a Message Adversary: Modularity Helps!

Authors
  • Frey, Davide
  • Raynal, Michel
  • Taïani, François
  • Albouy, Timothé
Publication Date
May 31, 2022
Source
HAL
Keywords
Language
English
License
Unknown
External links

Abstract

This paper explores how reliable broadcast can be implemented when facing a dual adversary that can both corrupt processes and remove messages.More precisely, we consider an asynchronous $n$-process message-passing systems in which up to $t_b$ processes are Byzantine and where, at the network level, for each message broadcast by a correct process, an adversary can prevent up to $t_m$ processes from receiving it (the integer $t_m$ defines the power of the message adversary).So, differently from previous works, this work considers that not only computing entities can be faulty (Byzantine processes), but also that the network can lose messages.To this end, the paper first introduces a new basic communication abstraction denoted $k\ell$-cast, and studies its properties in this new bi-dimensional adversary context.Then, the paper deconstructs existing Byzantine-tolerant asynchronous broadcast algorithms and, with the help of the $k\ell$-cast communication abstraction, reconstructs versions of them that tolerate both Byzantine processes and message adversaries.Interestingly, these reconstructed algorithms are also more efficient than the Byzantine-tolerant-only algorithms from which they originate.The paper also shows that the condition $n>3t_b+2t_m$ is necessary and sufficient (with signatures) to design such reliable broadcast algorithms.

Report this publication

Statistics

Seen <100 times