Affordable Access

A novel Li4Ti5O12-based high-performance lithium-ion electrode at elevated temperature / J. Mater. Chem. A

Authors
  • Guo, Junling
  • Zuo, Wenhua
  • Cai, Yingjun
  • Chen, Shimou
  • Zhang, Suojiang
  • Liu, Jinping
Publication Date
Jan 01, 2015
Source
Institutional Repository of Institute of Process Engineering, CAS (IPE-IR)
Keywords
License
Unknown
External links

Abstract

Destructive gas generation with associated swelling has been the major challenge for the large-scale application of Li4Ti5O12 (LTO)-based lithium-ion batteries (LIBs), especially when the LIBs work at high temperature. Here we report a new kind of Li4Ti5O12-rutile TiO2 (LTO-RTO) hybrid nanowire array electrode that can be cycled at elevated temperatures. After assembling the optimized LTO-RTO hybrid array as the anode and commercial LiCoO2 (LCO) film as the cathode, the obtained lithium-ion full cell exhibits outstanding performance with an ultralong lifetime at 60 degrees C (similar to 83.6% of its initial capacity can be retained at the end of 500 cycles at similar to 2.5 C). Based on comparative experiments, we proposed a reasonable mechanism and, further, provided a reasonable verdict about the gas generation: the H-2 and CO generation from the LTO electrode are significantly associated with the (111) facet. The presence of more LTO (400) planes than (111) ones in the optimized LTO-RTO electrode is the essential reason for long-term cycling at 60 degrees C without gassing. Our work implies that an ability to tune the crystal facet orientation of electrode nanostructures will be meaningful in the practical design of next-generation high-stability LIBs. / Destructive gas generation with associated swelling has been the major challenge for the large-scale application of Li4Ti5O12 (LTO)-based lithium-ion batteries (LIBs), especially when the LIBs work at high temperature. Here we report a new kind of Li4Ti5O12-rutile TiO2 (LTO-RTO) hybrid nanowire array electrode that can be cycled at elevated temperatures. After assembling the optimized LTO-RTO hybrid array as the anode and commercial LiCoO2 (LCO) film as the cathode, the obtained lithium-ion full cell exhibits outstanding performance with an ultralong lifetime at 60 degrees C (similar to 83.6% of its initial capacity can be retained at the end of 500 cycles at similar to 2.5 C). Based on comparative experiments, we proposed a reasonable mechanism and, further, provided a reasonable verdict about the gas generation: the H-2 and CO generation from the LTO electrode are significantly associated with the (111) facet. The presence of more LTO (400) planes than (111) ones in the optimized LTO-RTO electrode is the essential reason for long-term cycling at 60 degrees C without gassing. Our work implies that an ability to tune the crystal facet orientation of electrode nanostructures will be meaningful in the practical design of next-generation high-stability LIBs.

Report this publication

Statistics

Seen <100 times