Affordable Access

Isolation and characterization of Tn5 insertion mutants of Erwinia chrysanthemi that are deficient in polygalacturonate catabolic enzymes oligogalacturonate lyase and 3-deoxy-D-glycero-2,5-hexodiulosonate dehydrogenase.

Authors
Publication Date
Source
PMC
Keywords
Disciplines
  • Biology
License
Unknown

Abstract

Mutants of Erwinia chrysanthemi EC16 deficient in the polygalacturonate catabolic enzymes oligogalacturonate lyase (Ogl-) and 3-deoxy-D-glycero-2,5-hexodiulosonate (ketodeoxyuronate) dehydrogenase (KduD-) were obtained by Tn5 mutagenesis using the R plasmid pJB4JI. Ogl- Exu+ (Exu+, D-galacturonate utilization) and KduD- Exu- strains macerated potato tuber tissue and utilized glucose, glycerol, and gluconate, but they did not utilize polygalacturonate, unsaturated digalacturonate, or saturated digalacturonate. Genetic and physical evidence indicated that the Ogl- mutants and a KduD- recombinant contained a single copy of Tn5 and that Tn5 (Kmr) was linked to the mutant phenotypes. In the Ogl+ parents, basal levels of oligogalacturonate lyase were present in glycerol-grown cells and induced levels were present with saturated or unsaturated digalacturonate, while oligogalacturonate lyase was undetectable under similar conditions in Ogl- strains. Pectate lyase, polygalacturonase, and ketodeoxyuronate dehydrogenase were induced in an Ogl- strain by 3-deoxy-D-glycero-2,5-hexodiulosonate and by the enzymatic products of unsaturated digalacturonate but not by the digalacturonates. The KduD- strains lacked the dehydrogenase activity but in the presence of the digalacturonates produced higher levels of pectate lyase, polygalacturonase, and oligogalacturonate lyase than the KduD+ parents did. In the KduD- strains, pectate lyase and oligogalacturonate lyase were induced by unsaturated digalacturonate in a "gratuitous" manner, suggesting an intracellular accumulation of the inducer(s). We conclude that an intermediate(s) of the ketodeoxyuronate pathway induces pectate lyase, polygalacturonase, oligogalacturonate lyase, and ketodeoxyuronate dehydrogenase in E. chrysanthemi.

Statistics

Seen <100 times