Affordable Access

Iron normal mode dynamics in (nitrosyl)iron(II)tetraphenylporphyrin from X-ray nuclear resonance data.

Authors
Type
Published Article
Journal
Biophysical journal
Publication Date
Volume
82
Issue
6
Pages
2951–2963
Identifiers
PMID: 12023218
Source
Medline

Abstract

The complete iron atom vibrational spectrum has been obtained by refinement of normal mode calculations to nuclear inelastic x-ray absorption data from (nitrosyl)iron(II)tetraphenylporphyrin, FeTPP(NO), a useful model for heme dynamics in myoglobin and other heme proteins. Nuclear resonance vibrational spectroscopy (NRVS) provides a direct measurement of the frequency and iron amplitude for all normal modes involving significant displacement of (57)Fe. The NRVS measurements on isotopically enriched single crystals permit determination of heme in-plane and out-of-plane modes. Excellent agreement between the calculated and experimental values of frequency and iron amplitude for each mode is achieved by a force-field refinement. Significantly, we find that the presence of the phenyl groups and the NO ligand leads to substantial mixing of the porphyrin core modes. This first picture of the entire iron vibrational density of states for a porphyrin compound provides an improved model for the role of iron atom dynamics in the biological functioning of heme proteins.

There are no comments yet on this publication. Be the first to share your thoughts.

Statistics

Seen <100 times
0 Comments