Affordable Access

Involvement of two alpha-ketoglutarate-dependent dioxygenases in enantioselective degradation of (R)- and (S)-mecoprop by Sphingomonas herbicidovorans MH.

Authors
Type
Published Article
Journal
Journal of Bacteriology
0021-9193
Publisher
American Society for Microbiology
Publication Date
Volume
179
Issue
21
Pages
6674–6679
Identifiers
PMID: 9352915
Source
Medline

Abstract

Cell extracts of Sphingomonas herbicidovorans MH grown on (R)-mecoprop contained an enzyme activity that selectively converted (R)-mecoprop to 4-chloro-2-methylphenol, whereas extracts of cells grown on (S)-mecoprop contained an enzyme activity selective for the S enantiomer. Both reactions were dependent on alpha-ketoglutarate and ferrous ions. Besides 4-chloro-2-methylphenol, pyruvate and succinate were detected as products of the reactions. Labeling experiments with (18)O2 revealed that both enzyme activities catalyzed a dioxygenation reaction. One of the oxygen atoms of pyruvate and one of the oxygen atoms of succinate were derived from molecular oxygen. Analysis of cell extracts obtained from cells grown on different substrates by sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that growth on (R)-mecoprop and (S)-mecoprop caused the appearance of prominent protein bands at 34 and 32 kDa, respectively. Both protein bands were present when cells grew on the racemic mixture. The results demonstrate that S. herbicidovorans initiated the degradation of each enantiomer of mecoprop by a specific alpha-ketoglutarate-dependent dioxygenase. By comparing conversion rates of various phenoxy herbicides, we confirmed that the two enzyme activities were distinct from that of TfdA, which catalyzes the first step in the degradation of 2,4-dichlorophenoxyacetic acid in Ralstonia eutropha JMP134.

There are no comments yet on this publication. Be the first to share your thoughts.

Statistics

Seen <100 times
0 Comments