Affordable Access

Publisher Website

Investigation of the Therapeutic Effects of Palbociclib Conjugated Magnetic Nanoparticles on Different Types of Breast Cancer Cell Lines.

Authors
  • Parsian, Maryam1
  • Mutlu, Pelin2
  • Taghavi Pourianazar, Negar3
  • Yalcin Azarkan, Serap4
  • Gunduz, Ufuk1, 5
  • 1 Department of Biotechnology, Middle East Technical University, Ankara, Turkey. , (Turkey)
  • 2 Department of Biotechnology, Biotechnology Institute, Ankara University, Ankara, Turkey. , (Turkey)
  • 3 Department of Medical Laboratory Techniques, Istanbul Aydin University, Istanbul, Turkey. , (Turkey)
  • 4 Department of Molecular Biology and Genetics, Ahi Evran University, Kirsehir, Turkey. , (Turkey)
  • 5 Department of Biological Sciences, Middle East Technical University, Ankara, Turkey. , (Turkey)
Type
Published Article
Journal
Cellular and molecular bioengineering
Publication Date
Apr 01, 2023
Volume
16
Issue
2
Pages
143–157
Identifiers
DOI: 10.1007/s12195-022-00758-4
PMID: 37096074
Source
Medline
Keywords
Language
English
License
Unknown

Abstract

Drug targeting and controlled drug release systems in cancer treatment have many advantages over conventional chemotherapy in terms of limiting systemic toxicity, side effects, and overcoming drug resistance. In this paper, fabricating nanoscale delivery system composed of magnetic nanoparticles (MNPs) covered with poly-amidoamine (PAMAM) dendrimers and using its advantages were fully used to help the chemotherapeutic drug, Palbociclib, effectively reach tumors, specifically and stay stable in the circulation longer. In order to determine whether conjugate selectivity can be increased for the specific drug type, we have reported different strategies for loading and conjugation of Palbociclib to different generations of magnetic PAMAM dendrimers. The best method leading to the highest amount of Palbociclib conjugation was chosen, and the characterization of the Palbociclib conjugated dendrimeric magnetic nanoparticles (PAL-DcMNPs) were performed. In vitro pharmacological activity of the conjugation was demonstrated by measuring the cell viability and lactate dehydrogenase (LHD) release. Obtained results indicated that PAL-DcMNPs treatment of the breast cancer cell lines, leads to an increase in cell toxicity compared to free Palbociclib. The observed effects were more evident for MCF-7 cells than for MDA-MB231 and SKBR3 cells, considering that viability decreased to 30% at 2.5 µM treatment of PAL-DcMNPs at MCF-7 cells. Finally, in Palbociclib and PAL-DcMNPs treated breast cancer cells, the expression levels of some pro-apoptotic and drug resistance related genes were performed by RT-PCR analysis. Our knowledge indicates that the proposed approach is novel, and it can provide new insight into the development of Palbociclib targeting delivery system for cancer treatment. © The Author(s) under exclusive licence to Biomedical Engineering Society 2023, Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Report this publication

Statistics

Seen <100 times