Affordable Access

Investigation of potential RNA bulge stabilizing elements.

Published Article
Journal of molecular recognition : JMR
Publication Date
PMID: 15756640


As a part of our interest in recognition and cleavage of RNA we carried out thermal melting studies with the aim of screening a number of simple oligonucleotide modifications for their potential as modifying elements for RNA bulge stabilizing oligonucleotides. A specific model system from our studies on oligonucleotide-based artificial nuclease (OBAN) systems was chosen and the bulge size was varied from one to five nucleotides. Introduction of single 2'-modified nucleoside moieties (2'-O-methyl, 2'-deoxy and 2'-deoxy-2'-amino) with different conformational preferences adjacent to the bulge revealed that a higher preference for the north conformers gave more stable bulges across the whole range of bulge sizes. Changing a bulge closing a G-U wobble base pair to a G-C pair resulted in the interesting observation that, although the fully complementary complex and small bulges were highly stabilized, there was little difference in the stability of the larger bulges. The wobble base pair even gave a slight stabilization of the 5 nt bulge system. Introduction of a uridine C-5 linker with a single ammonium group was clearly bulge stabilizing (DeltaT(m) + 4.6 to + 5.4 degrees C for the three most stabilized bulges), although with limited selectivity for different bulge sizes since the fully complementary duplex was also stabilized. Introduction of a naphthoyl group on a 2'-aminolinker mostly gave a destabilizing effect, while introduction of a 5-aminoneocuproine moiety on the same linker resulted in stabilization of all bulges, in particular those with two or four unpaired nucleotides (DeltaT(m) + 3.6 and + 2.9 degrees C respectively). The aromatic groups destabilize the fully complementary duplex, resulting in higher selectivity towards stabilization of bulges. A combination of the studied partial element should be suitable for future designs of modified oligonucleotides that, apart from standard base pairing, can also provide additional non-Watson-Crick recognition of RNA.

There are no comments yet on this publication. Be the first to share your thoughts.


Seen <100 times