Affordable Access

Investigation of limiting metabolic steps in the utilization of xylose by recombinant Saccharomyces cerevisiae using metabolic engineering.

Authors
Type
Published Article
Journal
Yeast
0749-503X
Publisher
Wiley Blackwell (Blackwell Publishing)
Publication Date
Volume
22
Issue
5
Pages
359–368
Identifiers
PMID: 15806613
Source
Medline

Abstract

A Saccharomyces cerevisiae screening strain was designed by combining multiple genetic modifications known to improve xylose utilization with the primary objective of enhancing xylose growth and fermentation in xylose isomerase (XI)-expressing strains. Strain TMB 3045 was obtained by expressing the XI gene from Thermus thermophilus in a strain in which the GRE3 gene coding for aldose reductase was deleted, and the genes encoding xylulokinase (XK) and the enzymes of the non-oxidative pentose phosphate pathway (PPP) [transaldolase (TAL), transketolase (TKL), ribose 5-phosphate ketol-isomerase (RKI) and ribulose 5-phosphate epimerase (RPE)] were overexpressed. A xylose-growing and fermenting strain (TMB 3050) was derived from TMB 3045 by repeated cultivation on xylose medium. Despite its low XI activity, TMB 3050 was capable of aerobic xylose growth and anaerobic ethanol production at 30 degrees C. The aerobic xylose growth rate reached 0.17 l/h when XI was replaced with xylose reductase (XR) and xylitol dehydrogenase (XDH) genes expressed from a multicopy plasmid, demonstrating that the screening system was functional. Xylose growth had not previously been detected in strains in which the PPP genes were not overexpressed or when overexpressing the PPP genes but having XR and XDH genes chromosomally integrated. This demonstrates the necessity to simultaneously increase the conversion of xylose to xylulose and the metabolic steps downstream of xylulose for efficient xylose utilization in S. cerevisiae.

There are no comments yet on this publication. Be the first to share your thoughts.

Statistics

Seen <100 times
0 Comments
F