Affordable Access

Investigation on the control of supercritical centrifugal compressors supported by active magnetic bearings : Toward a new control strategy?

Authors
  • Defoy, Benjamin
Publication Date
Dec 14, 2012
Source
HAL-UPMC
Keywords
Language
English
License
Unknown
External links

Abstract

The dynamic behaviour of large turbomachinery should satisfy stringent requirements dictated by international standards and final users. Their flexible rotor is sensitive to the unbalance distribution and subjected to particular excitations coming from the industrial process. Usually, the performance margins between the requirements and the classical controller capabilities are small. Consequently, the magnetic bearing characteristics depend on the rotor geometry. Designing such controllers is difficult and time consuming. The objective of this thesis is to investigate the dynamic behaviour of supercritical centrifugal compressors in order to propose a new control strategy. First, each bearing is considered as one entity by coupling its two axes of action. The introduction of polar quantities permits a better observation of the rotor dynamic behaviour. In addition, by using logic close to human being reasoning, the fuzzy logic modulates the action forces as a function of the global dynamic behaviour. The coupling of the two approaches is an efficient way to apply targeted corrective actions. This controller attenuates the unbalance vibration when crossing critical speeds by applying damping forces, or increases the stiffness during transient or asynchronous excitations in order to limit the maximum displacement reached. As their structural damping is low, flexible rotors are very sensitive to spillover effect, which cannot be managed by fuzzy controllers. Consequently, an underlying PID is necessary. This hand-synthesized controller has high frequency characteristics tuned in order to ensure stability and robustness for each rotor. Compared to a classical approach, the polar fuzzy controller enables to increase the performance margins. These margins are used to fulfil three objectives: the achievement of standards requirements, the improvement of the subsynchronous behaviour, and the simplification and the standardization of the PID controller that we called SPID. This SPID is designed for a given application, such that the bearing characteristics on the operating frequency range are always the same. The control strategy is assessed numerically and experimentally. First, the numerical model is validated with experimental tests. Then, the controller developed is applied to an academic test rig. The controller is stable and robust. It exhibits performance superior to the augmented PID supplied with the test rig for both unbalance response and response to subsynchronous excitations. Finally, the control of an industrial compressor is assessed numerically. The results obtained are close to the standards requirements used for classical bearings. The optimization of the approach and the utilization of an automatic tuning algorithm for high frequency characteristics could lead to the standardization of Active Magnetic Bearings.

Report this publication

Statistics

Seen <100 times