Affordable Access

Investigation into the ability of roots of the poikilohydric plant Craterostigma plantagineum to survive dehydration stress.

Authors
  • Norwood, M
  • Toldi, O
  • Richter, A
  • Scott, P
Type
Published Article
Journal
Journal of experimental botany
Publication Date
Oct 01, 2003
Volume
54
Issue
391
Pages
2313–2321
Identifiers
PMID: 12947051
Source
Medline
License
Unknown

Abstract

The ability of the root system of the poikilohydric plant Craterostigma plantagineum to survive dehydration was investigated. The data presented here reveal that the root system is capable of surviving dehydration, but shortly after rehydration the root system senesces. Two weeks after rehydration the growth of a complete new root system is initiated. During dehydration sucrose accumulates from 36 to a maximum of 111 micromol g-1 DW in the roots. It is suggested that the accumulation of sucrose protects the root system during dehydration. There are major stores of stachyose in the roots of Craterostigma (making up over 40% of the dry weight of the tissue) and during dehydration these stores are metabolized. It is suggested that these stachyose stores act as carbohydrate reserves for the synthesis of sucrose. However, over 350 micromol g-1 DW stachyose is metabolized in the roots, which is well in excess of that required for the accumulation of sucrose observed. It is likely that the stachyose reserves in the root system are translocated to other regions of the plant to support carbohydrate metabolism during dehydration of the tissue. During rehydration, the stachyose reserves return to their original level within 96 h. There is no change in the elevated sucrose content of the roots over this period. Thus the roots maintain the protective properties of sucrose much longer than they are needed. The maintenance of high sucrose contents in rehydrating roots is discussed as a possible survival strategy against recurrent desiccation events.

Report this publication

Statistics

Seen <100 times