Affordable Access

Inverse Conjecture for the Gowers norm is false

Authors
Type
Preprint
Publication Date
Submission Date
Source
arXiv
External links

Abstract

Let $p$ be a fixed prime number, and $N$ be a large integer. The 'Inverse Conjecture for the Gowers norm' states that if the "$d$-th Gowers norm" of a function $f:\F_p^N \to \F_p$ is non-negligible, that is larger than a constant independent of $N$, then $f$ can be non-trivially approximated by a degree $d-1$ polynomial. The conjecture is known to hold for $d=2,3$ and for any prime $p$. In this paper we show the conjecture to be false for $p=2$ and for $d = 4$, by presenting an explicit function whose 4-th Gowers norm is non-negligible, but whose correlation any polynomial of degree 3 is exponentially small. Essentially the same result (with different correlation bounds) was independently obtained by Green and Tao \cite{gt07}. Their analysis uses a modification of a Ramsey-type argument of Alon and Beigel \cite{ab} to show inapproximability of certain functions by low-degree polynomials. We observe that a combination of our results with the argument of Alon and Beigel implies the inverse conjecture to be false for any prime $p$, for $d = p^2$.

There are no comments yet on this publication. Be the first to share your thoughts.

Statistics

Seen <100 times
0 Comments
F