Affordable Access

deepdyve-link deepdyve-link
Publisher Website

Intraoperative magnetic tracker calibration using a magneto-optic hybrid tracker for 3-D ultrasound-based navigation in laparoscopic surgery.

  • Nakamoto, Masahiko
  • Nakada, Kazuhisa
  • Sato, Yoshinobu
  • Konishi, Kozo
  • Hashizume, Makoto
  • Tamura, Shinichi
Published Article
IEEE transactions on medical imaging
Publication Date
Feb 01, 2008
DOI: 10.1109/TMI.2007.911003
PMID: 18334447


This paper describes a ultrasound (3-D US) system that aims to achieve augmented reality (AR) visualization during laparoscopic surgery, especially for the liver. To acquire 3-D US data of the liver, the tip of a laparoscopic ultrasound probe is tracked inside the abdominal cavity using a magnetic tracker. The accuracy of magnetic trackers, however, is greatly affected by magnetic field distortion that results from the close proximity of metal objects and electronic equipment, which is usually unavoidable in the operating room. In this paper, we describe a calibration method for intraoperative magnetic distortion that can be applied to laparoscopic 3-D US data acquisition; we evaluate the accuracy and feasibility of the method by in vitro and in vivo experiments. Although calibration data can be acquired freehand using a magneto-optic hybrid tracker, there are two problems associated with this method--error caused by the time delay between measurements of the optical and magnetic trackers, and instability of the calibration accuracy that results from the uniformity and density of calibration data. A temporal calibration procedure is developed to estimate the time delay, which is then integrated into the calibration, and a distortion model is formulated by zeroth-degree to fourth-degree polynomial fitting to the calibration data. In the in vivo experiment using a pig, the positional error caused by magnetic distortion was reduced from 44.1 to 2.9 mm. The standard deviation of corrected target positions was less than 1.0 mm. Freehand acquisition of calibration data was performed smoothly using a magneto-optic hybrid sampling tool through a trocar under guidance by realtime 3-D monitoring of the tool trajectory; data acquisition time was less than 2 min. The present study suggests that our proposed method could correct for magnetic field distortion inside the patient's abdomen during a laparoscopic procedure within a clinically permissible period of time, as well as enabling an accurate 3-D US reconstruction to be obtained that can be superimposed onto live endoscopic images.


Seen <100 times