Affordable Access

Intracellular trafficking of cell surface sialoglycoconjugates.

Authors
Type
Published Article
Journal
The Journal of biological chemistry
Publication Date
Volume
263
Issue
31
Pages
16316–16326
Identifiers
PMID: 3182795
Source
Medline
License
Unknown

Abstract

Recent reports have suggested that the majority of the molecular traffic through the Golgi apparatus is comprised of recycling, rather than newly synthesized, molecules. To evaluate the importance of this recycling pathway in greater detail, we examined the internalization and recycling of cell surface glycoproteins on EL-4 cells, a murine T-cell lymphoma, using sialic acids as covalent markers. Sialic acids were removed from the surface of living cells by exhaustive treatment with Vibrio cholerae sialidase at 4 degrees C and shown to be derived primarily from glycoproteins (93%), with only a small amount from glycolipids (7%). Cells were recultured at 37 degrees C over time and monitored for the resialylation of the cell surface using a sensitive high pressure liquid chromatography adaptation of the thiobarbituric acid assay for sialic acids. The return of sialic acid to the cell surface was found to be contingent upon de novo protein synthesis indicating that the bulk of plasma membrane sialoglycoconjugates do not recycle to an endogenous sialyltransferase-containing compartment for oligosaccharide reprocessing. Identical results were found for K562 cells, a human erythroleukemia cell line. The movement of specific glycoproteins was followed using the enzyme rat liver alpha 2-6Gal beta 1-4GlcNAc sialyltransferase together with CMP-[3H]NeuAc as an impermeant probe of the cell surface. Surface sialoglycoproteins were internalized slowly, a process unaffected by cycloheximide treatment. Only a few of these internalized glycoproteins were found to return to a trans-Golgi compartment followed by recycling to the cell surface. Taken together, these data indicate that the majority of replacement of sialic acids on the cell surface is due to de novo synthesis of glycoproteins and that only a small number of glycoproteins recycle through a trans-Golgi compartment.

Statistics

Seen <100 times