Affordable Access

Intracellular Na+ modulates the cAMP-dependent regulation of ion channels in the heart.

Authors
Type
Published Article
Journal
Proceedings of the National Academy of Sciences of the United States of America
Publication Date
Volume
88
Issue
16
Pages
6946–6950
Identifiers
PMID: 1714581
Source
Medline
License
Unknown

Abstract

The cAMP-dependent regulation of ion channels was studied by using the whole-cell configuration of the patch clamp technique. In isolated cardiac ventricular myocytes, the beta-adrenergically regulated Cl- current (ICl) exhibited an unusual dependence on Na+, such that replacement of extracellular Na+ with compounds such as tetramethylammonium, choline, Tris, or N-methyl-D-glucamine resulted in a reduction in current amplitude without changing the reversal potential. Replacement of extracellular Na+ with tetramethylammonium also reduced the magnitude of the beta-adrenergically enhanced Ca2+ current and delayed rectifier K+ current, suggesting that removal of Na+ was affecting the cAMP pathway that regulates all three currents. Replacement of extracellular Na+ also reduced ICl that was stimulated by (i) direct activation of adenylate cyclase with forskolin, (ii) inhibition of phosphodiesterase with 3-isobutyl-1-methylxanthine, (iii) exposure to the membrane-permeable cAMP derivative 8-bromoadenosine 3',5'-cyclic monophosphate, or (iv) direct phosphorylation of the channel with protein kinase A catalytic subunit. This suggests that the Na+ dependence is at a point beyond the activation of protein kinase A. The Na+ dependence of ICl regulation could not be explained by changes in intracellular Ca2+. However, the sensitivity of the ICl to changes in extracellular Na+ depended significantly on the intracellular Na+ concentration, suggesting that intracellular Na+ plays an important role in the cAMP-dependent regulation of ion channels.

Statistics

Seen <100 times