Affordable Access

Intersection Numbers of Polygon Spaces

  • Agapito, José
  • Godinho, Leonor
Publication Date
Nov 02, 2007
Submission Date
Sep 13, 2007
External links


We study the intersection ring of the space $\M(\alpha_1,...,\alpha_m)$ of polygons in $\R^3$. We find homology cycles dual to generators of this ring and prove a recursion relation in $m$ (the number of steps) for their intersection numbers. This result is analog of the recursion relation appearing in the work of Witten and Kontsevich on moduli spaces of punctured curves and on the work of Weitsman on moduli spaces of flat connections on two-manifolds of genus $g$ with $m$ marked points. Based on this recursion formula we obtain an explicit expression for the computation of the intersection numbers of polygon spaces and use it in several examples. Among others, we study the special case of equilateral polygon spaces (where all the $\alpha_i$ are the same) and compare our results with the expressions for these particular spaces that have been determined by Kamiyama and Tezuka. Finally, we relate our explicit formula for the intersection numbers with the generating function for intersection pairings of the moduli space of flat connections of Yoshida, as well as with equivalent expressions for polygon spaces obtained by Takakura and Konno through different techniques.

Report this publication


Seen <100 times