Affordable Access

Access to the full text

Interference of clocks: A quantum twin paradox

Authors
  • Loriani, Sina1
  • Friedrich, Alexander2
  • Ufrecht, Christian2
  • Di Pumpo, Fabio2
  • Kleinert, Stephan2
  • Abend, Sven1
  • Gaaloul, Naceur1
  • Meiners, Christian1
  • Schubert, Christian1
  • Tell, Dorothee1
  • Wodey, Étienne1
  • Zych, Magdalena3
  • Ertmer, Wolfgang1
  • Roura, Albert2
  • Schlippert, Dennis1
  • Schleich, Wolfgang P.2, 4, 5
  • Rasel, Ernst M.1
  • Giese, Enno2
  • 1 Institut für Quantenoptik, Leibniz Universität Hannover, Welfengarten 1, D-30167 Hannover, Germany.
  • 2 ), Universität Ulm, Albert-Einstein-Allee 11, D-89069 Ulm, Germany.
  • 3 Centre for Engineered Quantum Systems, School of Mathematics and Physics, The University of Queensland, St Lucia, QLD 4072, Australia.
  • 4 &M AgriLife Research, Texas A&M University, College Station, TX 77843-4242, USA.
  • 5 Institute of Quantum Technologies, German Aerospace Center (DLR), D-89069 Ulm, Germany.
Type
Published Article
Journal
Science Advances
Publisher
American Association for the Advancement of Science (AAAS)
Publication Date
Oct 04, 2019
Volume
5
Issue
10
Identifiers
DOI: 10.1126/sciadv.aax8966
PMID: 31620559
PMCID: PMC6777965
Source
PubMed Central
License
Green

Abstract

The phase of matter waves depends on proper time and is therefore susceptible to special-relativistic (kinematic) and gravitational (redshift) time dilation. Hence, it is conceivable that atom interferometers measure general-relativistic time-dilation effects. In contrast to this intuition, we show that (i) closed light-pulse interferometers without clock transitions during the pulse sequence are not sensitive to gravitational time dilation in a linear potential. (ii) They can constitute a quantum version of the special-relativistic twin paradox. (iii) Our proposed experimental geometry for a quantum-clock interferometer isolates this effect.

Report this publication

Statistics

Seen <100 times