Affordable Access

Interactions of iodide ions with isolated photosystem 2 particles.

Authors
Type
Published Article
Journal
Archives of biochemistry and biophysics
Publication Date
Volume
285
Issue
2
Pages
339–343
Identifiers
PMID: 1897936
Source
Medline
License
Unknown

Abstract

The effects of I- ions on O2 evolution by photosystem 2 particles, which were depleted of the 18-kDa and the 23-kDa extrinsic proteins of the O2 evolution complex by NaCl washing (dPS2 particles) were examined. In the absence of Cl- (incompetent dPS2) I- stimulated O2 evolution up to 3-6 mM, depending on the associated cation, and inhibited it at higher concentrations. In the presence of Cl- (competent dPS2), I- was inhibitory at all concentrations. The inhibition was reversible, it occurred at a site preceding Tyrz (Tyr residue mediating electron transfer from H2O to photosystem 2), and it interfered noncompetitively with the reactivation of incompetent dPS2 with Cl-. Furthermore, the organic salts tetrabutyl ammonium iodide and tetraphenyl phosphonium iodide proved to be stronger inhibitors than the inorganic NaI. This is interpreted as an indication of a negatively charged surface, situated behind a hydrophobic permeability barrier. Permeant organic cations, being better compensators of the inner surface charge than Na+, are also more apt in facilitating access of the I- ions to the inhibitory site in the vicinity of Tyrz.

Statistics

Seen <100 times