Affordable Access

Inhibition and stimulation of rat luteal protein phosphorylation by protein kinase effectors.

Authors
Type
Published Article
Journal
Biochimica et Biophysica Acta
0006-3002
Publisher
Elsevier
Publication Date
Volume
1093
Issue
1
Pages
102–110
Identifiers
PMID: 2049406
Source
Medline

Abstract

Estradiol-17 beta (E2) predetermined protein phosphorylation systems have been identified recently in midpregnant rat corpus luteum. Major type protein kinase activities in these systems were explored here using as probes protein kinase inhibitors. Luteal nuclear, mitochondrial, microsomal and cytosolic fractions were obtained from rats hysterectomized and hypophysectomized on day 12 of pregnancy and then treated for 72 h with E2. In vitro phosphate transfer from [gamma-32P]ATP was monitored by SDS-PAGE followed by autoradiography. Polymyxin B (PMB), 1-200 microM, a PKC inhibitor, completely blocked, in a dose dependent manner, the Ca2+ phospholipid (PL) stimulated radiolabeling of nuclear fraction Mr 79,000 substrate(s) as expected. Similarly, the calmodulin (CaM) antagonist compound 48/80, 1-20 micrograms/ml, inhibited the Ca2+/CaM-dependent phosphorylation of the microsomal fraction Mr 60,000 and Mr 56,000 proteins. The Ca2+ PL-enhanced labeling of mitochondrial fraction Mr 76,000 substrate(s) was only partially susceptible to inhibition by PMB or compound 48/80. Studies of microsomal fraction phosphoprotein bands not stimulated by added cofactors indicated that the radiolabeling of Mr 75,000 protein(s) was partially blocked by compound 48/80 but not by PMB. Phosphate transfer to Mr 41,000 protein(s) was inhibited by the cAMP-dependent kinase protein inhibitor (PKI), while the phosphorylation of Mr 31,000 protein(s) was refractory to all inhibitors employed here. Surprisingly, regardless of hormonal pretreatment, PMB and compound 48/80 activated in every subcellular fraction the cofactor independent appearance of at least one phosphoprotein band, between Mr 87,000-99,000. This novel observation should be instrumental in understanding the actions of these compounds towards living cells.

There are no comments yet on this publication. Be the first to share your thoughts.

Statistics

Seen <100 times
0 Comments
F