Affordable Access

Inhibition of lipoprotein lipase activity by sphingomyelin: role of membrane surface structure.

Authors
Type
Published Article
Journal
Biochimica et Biophysica Acta
0006-3002
Publisher
Elsevier
Publication Date
Volume
1486
Issue
2-3
Pages
312–320
Identifiers
PMID: 10903482
Source
Medline

Abstract

We have recently shown that sphingomyelin (SM) strongly inhibits lipoprotein lipase (LPL)-mediated lipolysis in monolayers and emulsion particles. To further evaluate how SM modulates LPL activity on the emulsion surface, the relationship between membrane surface structure and LPL activity was investigated. We measured fluorescence anisotropy of 1-palmitoyl-2-[3-(diphenylhexatrienyl)propionyl]-sn-3-phosphati dylcho line, probing surface acyl chain fluidity, and fluorescence lifetime of N-(5-dimethylaminonaphthalene-1-sulfonyl)dipalmitoylphosphatidylethan olamine in H(2)O and D(2)O buffer, assessing the degree of hydration in the head group region. The results revealed that incorporation of egg SM into triolein-egg phosphatidylcholine emulsions markedly increased acyl chain order and decreased head group hydration of the surface monolayers. In contrast, cholesterol was shown to increase head group hydration despite a strong increase in acyl chain order. The close correlation between the apparent K(m) values of LPL and the degree of head group hydration indicated that LPL interacts with the head group region rather than with the hydrophobic interior of the surface monolayers. However, apparent V(max) did not show a simple correlation with any surface structure, and the finding in which SM had no effect on apparent V(max) of medium-chain triglyceride emulsions suggested that the hydrophobic interaction between acyl chains of SM and triglyceride at the emulsion surface is important for determining the apparent V(max). These results showed conclusively that SM inhibits LPL activity mainly by changing the emulsion surface structure and not by a specific interaction between SM and LPL.

There are no comments yet on this publication. Be the first to share your thoughts.

Statistics

Seen <100 times
0 Comments