Affordable Access

Inheritance of Mutator Activity in ZEA MAYS as Assayed by Somatic Instability of the bz2-mu1 Allele

  • Virginia Walbot
Publication Date
Dec 01, 1986


Mutator lines of maize were originally defined by their high forward mutation rate, now known to be caused by the transposition of numerous Mu elements. A high frequency of somatic instability, seen as a fine purple spotting pattern on the aleurone tissue, is characteristic of Mu-induced mutable alleles of genes of the anthocyanin pathway. Loss of such somatic instability has been correlated with the de novo, specific modification of Mu element DNA. In this report the presence or loss of somatic instability at the bz2-mu1 allele has been monitored to investigate the inheritance of the Mutator phenomenon. The active state is labile and may become weakly active (low fraction of spotted kernel progeny) or totally inactive (no spotted kernel progeny) during either outcrossing to non-Mutator lines or on self-pollination. In contrast, the inactive state is relatively permanent with rare reactivation in subsequent crosses to non-Mutator lines. Cryptic bz2-mu1 alleles in weakly active lines can be efficiently reactivated to somatic instability when crossed with an active line. However, in reciprocal crosses of active and totally inactive individuals, strong maternal effects were observed on the inactivation of a somatically unstable bz2-mu1 allele and on the reactivation of cryptic bz2-mu1 alleles. In general, the activity state of the female parent determines the mutability of the progeny.


Seen <100 times