Affordable Access

[Influencing Factors for Hydrolysis of Sewage Sludge Pretreated by Microwave-H2O2-Alkaline Process].

Authors
  • Jia, Rui-lai
  • Wei, Yuan-song
  • Liu, Ji-bao
Type
Published Article
Journal
Huan jing ke xue= Huanjing kexue / [bian ji, Zhongguo ke xue yuan huan jing ke xue wei yuan hui "Huan jing ke xue" bian ji wei yuan hui.]
Publication Date
Jun 01, 2015
Volume
36
Issue
6
Pages
2222–2231
Identifiers
PMID: 26387329
Source
Medline
License
Unknown

Abstract

Pretreatment can improve carbon source utilization of sludge. In this study, influencing factors of hydrolysis including hydrolysis time, ratio of seed sludge and temperature were investigated for sewage sludge pretreated by microwave-H2O2-alkaline process through batch experiments. Meanwhile, effects of hydrolysis and releasing characteristics of organic matters were also investigated under the optimized conditions. The results showed that the optimal hydrolysis time was 12 h and the optimized inoculum to substrate ratio (I/S) was 0.07. Under optimized conditions (12 h, I/S =0.07), SCOD, soluble proteins, soluble sugars and total VFAs content increased with increasing temperature, reaching the maximum at 65 degrees C. Acetic, propionic and iso-valeric acids were the dominant VFAs produced, and the percentage of acetic acid accounting for total VFAs was between 42.7% and 59.7%. In terms of carbon source composition, SCOD accounted for 37.8%-40.8% of total COD, soluble proteins accounted for 38.3%-41.3% of SCOD, soluble sugars accounted for 9.0%-9.3% of SCOD and total VFAs accounted for 3.3%-5.5% of SCOD. The COD/TN watio was between 15.79 and 16.50 in the sludge supernatant. The results of the three-dimensional fluorescence spectra and apparent molecular weight distributions showed that the fluorescence intensity of tyrosine-like substances in the soluble microbial products was the highest and increased with the increasing temperature in the sludge supernatant. After the sewage sludge was pretreated by microwave-H2O2-OH process, a lot of organic matters were released, including small molecule organics (M 100-350), while after hydrolysis, M, 3000-60,000 organics were degraded.

Report this publication

Statistics

Seen <100 times