Affordable Access

deepdyve-link deepdyve-link
Publisher Website

Influence of water quality on zinc toxicity to the Florida apple snail (Pomacea paludosa) and sensitivity of freshwater snails to zinc.

Authors
  • Hoang, Tham C
  • Tong, Xin
Type
Published Article
Journal
Environmental toxicology and chemistry / SETAC
Publication Date
Mar 01, 2015
Volume
34
Issue
3
Pages
545–553
Identifiers
DOI: 10.1002/etc.2827
PMID: 25475172
Source
Medline
Keywords
License
Unknown

Abstract

The present study characterized the influence of water-quality characteristics on zinc (Zn) toxicity to the Florida apple snail (Pomacea paludosa) and the sensitivity of freshwater snails to Zn. Standard 96-h renewal acute toxicity tests were conducted with Zn and juvenile P. paludosa under 3 conditions of pH and alkalinity, water hardness, and dissolved organic carbon (DOC). Median lethal effect concentrations (96-h LC50s), no-observed- effect concentrations, lowest-observed-effect concentrations, LC10s, and LC20s were determined for each test. The results showed that Zn toxicity to P. paludosa decreased linearly with increasing hardness, pH, and DOC. A multiple linear regression model based on pH, hardness, and DOC was able to explain 99% of the observed variability in LC50s. These results are useful for the development of a biotic ligand model (BLM) for P. paludosa and Zn. Zinc acute toxicity data were collected from the literature for 12 freshwater snail species in a wide range of water-quality characteristics for species sensitivity distribution analysis. The results showed that P. paludosa is the second most sensitive to Zn. The present study also suggested that aqueous ZnCO3 and ZnHCO3 (-) can be bioavailable to P. paludosa. Therefore, bioavailability models (e.g., BLM) should take these Zn species into consideration for bioavailability when applied to snails.

Report this publication

Statistics

Seen <100 times