Affordable Access

The influence of isolated femur and tibia rotations on patellar tendon stress: A sensitivity analysis using finite element analysis

Authors
  • Park, Kyungmi
  • Keyak, Joyce H
  • Powers, Christopher M
Publication Date
Feb 01, 2023
Source
eScholarship - University of California
Keywords
License
Unknown
External links

Abstract

The purpose of this study was to determine the influence of frontal and transverse plane rotations of the femur and tibia on peak maximum principal stress in the patellar tendon. Using finite element modeling, patellar tendon stress profiles of eight healthy individuals were obtained during a simulated squatting task (45° of knee flexion). The femur and tibia of each model were rotated 10° (in 2° increments) along their respective axes beyond that of the natural degree of rotation. This process was repeated for the transverse plane (internal and external rotation) and frontal plane (adduction and abduction). Quasi-static loading simulations were performed to quantify peak maximum principal stress in patellar tendon. Internal and external rotations of the femur and tibia that exceeded 4° beyond that of the natural rotation resulted in progressively greater patellar tendon stress (p < 0.05). Incremental femur and tibia adduction and abduction resulted in an increase in patellar tendon stress, but only at the end range of motions evaluated. These results suggest that tibiofemoral rotations in the frontal and transverse planes have the potential to influence patellar tendon stress. In particular, patellar tendon stress is highly sensitive to small degrees of tibia and/or femur motions in the transverse plane.

Report this publication

Statistics

Seen <100 times