Affordable Access

INFLUENCE OF DEOXYRIBONUCLEIC ACID DEGRADATION PRODUCTS AND ORTHOPHOSPHATE ON DEOXYNUCLEOTIDE KINASE ACTIVITY AND DEOXYRIBONUCLEIC ACID SYNTHESIS IN PNEUMOCOCCUS TYPE 3.

Authors
  • FIRSHEIN, W
Type
Published Article
Journal
Journal of bacteriology
Publication Date
Aug 01, 1965
Volume
90
Pages
327–336
Identifiers
PMID: 14329443
Source
Medline
Keywords
License
Unknown

Abstract

Firshein, William (Wesleyan University, Middletown, Conn.). Influence of deoxyribonucleic acid degradation products and orthophosphate on deoxynucleotide kinase activity and deoxyribonucleic acid synthesis in pneumococcus type III. J. Bacteriol. 90:327-336. 1965.-An oligodeoxynucleotide fraction derived from a deoxyribonuclease-treated calf-thymus deoxyribonucleic acid (DNA) can enhance the activity of deoxycytidylic acid (dCMP) and deoxyguanylic acid (dGMP) kinases in cell suspensions of type III pneumococci. High levels of orthophosphate can produce similar effects. For part of the incubation period, the activity of dCMP and dGMP kinases is very low or undetectable in unsupplemented-cell suspensions of pneumococci. In contrast, the remaining kinases, deoxyadenylic acid and thymidylic acid, which are present in ample amounts in control and supplemented cells throughout the incubation period, are unaffected by the addition of oligodeoxynucleotides and orthophosphate. The stimulation of kinase activity is amino acid-dependent and can be abolished by adding chloramphenicol. When the oligodeoxynucleotide fraction and orthophosphate are further supplemented with all eight of the naturally occurring deoxynucleosides and deoxynucleotides (which do not affect kinase activity), a preferential enhancement of DNA synthesis occurs in comparison with cell growth or protein synthesis. Addition of deoxynucleosides and deoxynucleotides to unsupplemented cells produces only a slight increase in DNA synthesis. The preferential enhancement of DNA synthesis can be prevented by adding chloramphenicol at a certain time during incubation.

Report this publication

Statistics

Seen <100 times