Affordable Access

Access to the full text

Influence of Caudovirales Phages on Humoral Immunity in Mice

Authors
  • chechushkov;, anton
Publication Date
Jun 26, 2021
Identifiers
DOI: 10.3390/v13071241
OAI: oai:mdpi.com:/1999-4915/13/7/1241/
Source
MDPI
Keywords
Language
English
License
Green
External links

Abstract

Bacteriophages are promising antibacterial agents. Although they have been recognized as bacterial viruses and are considered to be non-interacting with eukaryotic cells, there is growing evidence that phages may have a significant impact on the immune system via interactions with macrophages, neutrophils, and T-cell polarization. In this study, the influence of phages of podovirus, siphovirus, and myovirus morphotypes on humoral immunity of CD-1 mice was investigated. In addition, tissue distribution of the phages was tested in these mice. No common patterns were found either in the distribution of phages in mice or in changes in the levels of cytokines in the sera of mice once injected with phages. Importantly, pre-existing IgM-class antibodies directed against capsid proteins of phages with myovirus and siphovirus morphotypes were identified in mice before immunization. After triple immunization of CD1-mice with phages without any adjuvant, levels of anti-phage serum polyclonal IgG antibodies increased. Immunogenic phage proteins recognized by IgM and/or IgG antibodies were identified using Western blot analysis and mass spectrometry. In addition, mice serum collected after immunization demonstrated neutralizing properties, leading to a substantial decrease in infectivity of investigated phages with myovirus and siphovirus morphotypes. Moreover, serum samples collected before administration of these phages exhibited some ability to reduce the phage infectivity. Furthermore, Proteus phage PM16 with podovirus morphotype did not elicit IgM or IgG antibodies in immunized mice, and no neutralizing activities against PM16 were revealed in mouse serum samples before and after immunization.

Report this publication

Statistics

Seen <100 times