Affordable Access

Influência do tratamento físico da fibra de coco nas propriedades mecânicas do biocompósito com matriz de poliéster insaturada

  • Oliveira, Daniel Magalhães de
Publication Date
Jul 30, 2018
Repositório Institucional UNESP
External links


Greater awareness regarding environmental issues, coupled with scarcity of resources, global environmental problems, and increasingly strong environmental policies have influenced industries and researchers to appreciate, study and develop new materials from renewable resources and new manufacturing technologies. However, literature reports that interfacial adhesion between natural fibers and polymeric matrix is a factor that affects the biocomposite mechanical properties, able to be improved by several types of surface treatments. Thus, coconut fiber mats were surface treated by atmospheric plasma jet, considered less aggressive to the environment when compared to chemical treatments, in order to improve interfacial adhesion with the polymer matrix to obtain biocomposites. Data from coconut fiber characterization shown that the treatment modified the fibers surface and consequently their hydrophilicity and surface energy, decreasing their permeability value. Processing parameters and most appropriate curing cycle were determined and defined as 80 °C for 210 min, 135 °C for 180 min and 160 °C for 120 min, without application of vacuum during the process and approximately 40 % fiber volume fraction. Ultrasonic acoustic inspection allowed evaluating the biocomposite plates processing by verifying possible imperfections caused by impregnation of the coconut fiber by the resin and its homogeneity. Thermogravimetric analysis indicated that the initial biocomposite degradation temperature is 175 °C. Glass transition temperature, determined by DMA, is approximately 80 °C. Mechanical tests presented higher values of tensile strength and flexural strength for the biocomposites reinforced with treated fibers when compared to the biocomposites reinforced with untreated fibers. Higher values of tensile and flexural modulus, as well as DMA loss and storage modulus for biocomposites reinforced with treated fibers sustained better mechanical properties because of the plasma treatment. Fracture morphology indicated better reinforcement-matrix adhesion for biocomposite reinforced with treated fibers

Report this publication


Seen <100 times