# Inertial mass of the Abrikosov vortex.

- Authors
- Type
- Published Article
- Journal
- Physical review letters
- Publication Date
- Volume
- 91
- Issue
- 6
- Pages
- 67004–67004
- Identifiers
- PMID: 12935104
- Source
- Medline

## Abstract

We show that a large contribution to the inertial mass of the Abrikosov vortex comes from transversal displacements of the crystal lattice. The corresponding part of the mass per unit length of the vortex line is M(l)=(m(2)(e)c(2)/64 pi alpha(2)mu lambda(4)(L))ln((lambda(L)/xi), where m(e) is the bare electron mass, c is the speed of light, alpha=e(2)/Planck's over 2 pi c approximately 1/137 is the fine structure constant, mu is the shear modulus of the solid, lambda(L) is the London penetration length, and xi is the coherence length. In conventional superconductors, this mass can be comparable to or even greater than the vortex core mass computed by Suhl [Phys. Rev. Lett. 14, 226 (1965)]].

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
This record was last updated on 07/03/2016 and may not reflect the most current and accurate biomedical/scientific data available from NLM.
The corresponding record at NLM can be accessed at https://www.ncbi.nlm.nih.gov/pubmed/12935104

## There are no comments yet on this publication. Be the first to share your thoughts.