Affordable Access

Access to the full text

An indirect approach to predict deadwood biomass in forests of Ukrainian Polissya using Landsat images and terrestrial data

Authors
  • Matsala, Maksym1
  • Myroniuk, Viktor1
  • Bilous, Andrii1
  • Terentiev, Andrii1
  • Diachuk, Petro1
  • Zadorozhniuk, Roman1
  • 1 National University of Life and Environmental Sciences of Ukraine, Heroiv Oborony Street 15 , (Ukraine)
Type
Published Article
Journal
Forestry Studies
Publisher
Sciendo
Publication Date
Mar 11, 2021
Volume
73
Issue
1
Pages
107–124
Identifiers
DOI: 10.2478/fsmu-2020-0018
Source
De Gruyter
Keywords
License
Green

Abstract

Spatially explicit and consistent mapping of forest biomass is one of the key tasks towards full and appropriate accounting of carbon budgets and productivity potentials at different scales. Landsat imagery coupled with terrestrial-based data and processed using modern machine learning techniques is a suitable data source for mapping of forest components such as deadwood. Using relationships between deadwood biomass and growing stock volume, here we indirectly map this ecosystem compartment within the study area in northern Ukraine. Several machine learning techniques were applied: Random Forest (RF) for the land cover and tree species classification task, k-Nearest Neighbours (k-NN) and Gradient Boosting Machines (GBM) for the deadwood imputation purpose. Land cover (81.9%) and tree species classification (78.9%) were performed with a relatively high level of overall accuracy. Outputs of deadwood biomass mapping using k-NN and GBM matched quite well (8.4 ± 2.3 t·ha−1 (17% of the mean) vs. 8.1 ± 1.7 t·ha−1 (16% of the mean), respectively mean ± SD deadwood biomass stock), indicating a strong potential of ensemble boosters to predict forest biomass in a spatially explicit manner. The main challenges met in the study were related to the limitations of available ground-based data, thus showing the need for national statistical inventory implications in Ukraine.

Report this publication

Statistics

Seen <100 times