Affordable Access

Access to the full text

Increased serum neurofilament light chain concentration indicates poor outcome in Guillain-Barré syndrome

Authors
  • Altmann, Patrick1
  • De Simoni, Desiree1, 1
  • Kaider, Alexandra1
  • Ludwig, Birgit1
  • Rath, Jakob1
  • Leutmezer, Fritz1
  • Zimprich, Fritz1
  • Hoeftberger, Romana1, 1
  • Lunn, Michael P.2
  • Heslegrave, Amanda3, 4
  • Berger, Thomas1
  • Zetterberg, Henrik3, 4, 5, 6
  • Rommer, Paulus Stefan1
  • 1 Medical University of Vienna, Vienna, Austria , Vienna (Austria)
  • 2 Institute of Neurology, University College London, London, UK , London (United Kingdom)
  • 3 UCL Queen Square Institute of Neurology, London, UK , London (United Kingdom)
  • 4 The UK Dementia Research Institute at UCL, London, UK , London (United Kingdom)
  • 5 The Sahlgrenska Academy at the University of Gothenburg, Institute of Neuroscience and Physiology, Mölndal, Sweden , Mölndal (Sweden)
  • 6 Sahlgrenska University Hospital, Mölndal, Sweden , Mölndal (Sweden)
Type
Published Article
Journal
Journal of Neuroinflammation
Publisher
Springer (Biomed Central Ltd.)
Publication Date
Mar 17, 2020
Volume
17
Issue
1
Identifiers
DOI: 10.1186/s12974-020-01737-0
Source
Springer Nature
Keywords
License
Green

Abstract

BackgroundGuillain-Barré syndrome (GBS) is an autoimmune disease that results in demyelination and axonal damage. Five percent of patients die and 20% remain significantly disabled on recovery. Recovery is slow in most cases and eventual disability is difficult to predict, especially early in the disease. Blood or cerebrospinal fluid (CSF) biomarkers that could help identify patients at risk of poor outcome are required. We measured serum neurofilament light chain (sNfL) concentrations from blood taken upon admission and investigated a correlation between sNfL and clinical outcome.MethodsBaseline sNfL levels in 27 GBS patients were compared with a control group of 22 patients with diagnoses not suggestive of any axonal damage. Clinical outcome parameters for GBS patients included (i) the Hughes Functional Score (HFS) at admission, nadir, and discharge; (ii) the number of days hospitalised; and (iii) whether intensive care was necessary.ResultsThe median sNfL concentration in our GBS sample on admission was 85.5 pg/ml versus 9.1 pg/ml in controls. A twofold increase in sNfL concentration at baseline was associated with an HFS increase of 0.6 at nadir and reduced the likelihood of discharge with favourable outcome by a factor of almost three. Higher sNfL levels upon admission correlated well with hospitalisation time (rs = 0.69, p < 0.0001), during which transfer to intensive care occurred more frequently at an odds ratio of 2.4. Patients with baseline sNfL levels below 85.5 pg/ml had a 93% chance of being discharged with an unimpaired walking ability.ConclusionssNfL levels measured at hospital admission correlated with clinical outcome in GBS patients. These results represent amounts of acute axonal damage and reflect mechanisms resulting in disability in GBS. Thus, sNfL may serve as a convenient blood-borne biomarker to personalise patient care by identifying those at higher risk of poor outcome.

Report this publication

Statistics

Seen <100 times