Affordable Access

Access to the full text

Improved thermal stability and oxidation resistance of electrodeposited NiCrP amorphous alloy coatings

Authors
  • Guo, Y Q1
  • Yu, J K1
  • Yang, H B1
  • Qiao, Q1
  • Li, Q Y1
  • Zhao, X C1
  • 1 Yanshan University, Qinhuangdao, Hebei, 066004, People’s Republic of China , Qinhuangdao (China)
Type
Published Article
Journal
Bulletin of Materials Science
Publisher
Springer-Verlag
Publication Date
Mar 25, 2020
Volume
43
Issue
1
Identifiers
DOI: 10.1007/s12034-020-2067-y
Source
Springer Nature
Keywords
License
Yellow

Abstract

Amorphous NiP and NiCrP alloy coatings were prepared on copper substrates by electrodeposition. The thermal stability of the obtained coatings were evaluated by the onset temperature of phase transformation identified with differential scanning calorimetry measurements, and their high temperature oxidation resistances were characterized by the oxidation kinetics curve and the oxidation activation energy. The mechanism of the doping effect of Cr element on crystallization temperature and oxidation resistance of the alloy coatings were discussed based on X-ray diffraction analysis. The results show that the crystallization temperature of NiP amorphous alloy was 344∘C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$344^{\circ }\hbox {C}$$\end{document}, and the oxidation activation energy was calculated to be 1.54×103Jmol-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1.54 \times 10^{\mathrm {3}}\hbox { J mol}^{\mathrm {-1}}$$\end{document}. As for NiCrP alloy coating with a Cr content of 1.8 wt%, the crystallization temperature increased to 403.8∘C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$403.8^{\circ }\hbox {C}$$\end{document} and the calculated oxidation activation energy was 3.53×104Jmol-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3.53 \times 10^{\mathrm {4}}\hbox { J mol}^{\mathrm {-1}}$$\end{document}, 2.29 times higher than the NiP coating. The remarkably enhanced high-temperature oxidation resistance of NiCrP alloy coating can be attributed to the compact metal oxide film formed on the surface.

Report this publication

Statistics

Seen <100 times