Affordable Access

The Importance of Being Earnest in Crowdsourcing Systems

Authors
Type
Preprint
Publication Date
Submission Date
Identifiers
arXiv ID: 1411.7960
Source
arXiv
External links

Abstract

This paper presents the first systematic investigation of the potential performance gains for crowdsourcing systems, deriving from available information at the requester about individual worker earnestness (reputation). In particular, we first formalize the optimal task assignment problem when workers' reputation estimates are available, as the maximization of a monotone (submodular) function subject to Matroid constraints. Then, being the optimal problem NP-hard, we propose a simple but efficient greedy heuristic task allocation algorithm. We also propose a simple ``maximum a-posteriori`` decision rule. Finally, we test and compare different solutions, showing that system performance can greatly benefit from information about workers' reputation. Our main findings are that: i) even largely inaccurate estimates of workers' reputation can be effectively exploited in the task assignment to greatly improve system performance; ii) the performance of the maximum a-posteriori decision rule quickly degrades as worker reputation estimates become inaccurate; iii) when workers' reputation estimates are significantly inaccurate, the best performance can be obtained by combining our proposed task assignment algorithm with the LRA decision rule introduced in the literature.

There are no comments yet on this publication. Be the first to share your thoughts.

Statistics

Seen <100 times
0 Comments