Affordable Access

Implementation of a process analytical technology system in a freeze-drying process using Raman spectroscopy for in-line process monitoring.

Published Article
Analytical chemistry
Publication Date
PMID: 17896825


The aim of the present study was to propose a strategy for the implementation of a Process Analytical Technology system in freeze-drying processes. Mannitol solutions, some of them supplied with NaCl, were used as models to freeze-dry. Noninvasive and in-line Raman measurements were continuously performed during lyophilization of the solutions to monitor real time the mannitol solid state, the end points of the different process steps (freezing, primary drying, secondary drying), and physical phenomena occurring during the process. At-line near-infrared (NIR) and X-ray powder diffractometry (XRPD) measurements were done to confirm the Raman conclusions and to find out additional information. The collected spectra during the processes were analyzed using principal component analysis and multivariate curve resolution. A two-level full factorial design was used to study the significant influence of process (freezing rate) and formulation variables (concentration of mannitol, concentration of NaCl, volume of freeze-dried sample) upon freeze-drying. Raman spectroscopy was able to monitor (i) the mannitol solid state (amorphous, alpha, beta, delta, and hemihydrate), (ii) several process step end points (end of mannitol crystallization during freezing, primary drying), and (iii) physical phenomena occurring during freeze-drying (onset of ice nucleation, onset of mannitol crystallization during the freezing step, onset of ice sublimation). NIR proved to be a more sensitive tool to monitor sublimation than Raman spectroscopy, while XRPD helped to unravel the mannitol hemihydrate in the samples. The experimental design results showed that several process and formulation variables significantly influence different aspects of lyophilization and that both are interrelated. Raman spectroscopy (in-line) and NIR spectroscopy and XRPD (at-line) not only allowed the real-time monitoring of mannitol freeze-drying processes but also helped (in combination with experimental design) us to understand the process.

There are no comments yet on this publication. Be the first to share your thoughts.


Seen <100 times