The impact of pedal rate on muscle oxygenation, muscle activation and whole-body VO2 during ramp exercise in healthy subjects
- Authors
- Type
- Published Article
- Journal
- European Journal of Applied Physiology and Occupational Physiology
- Publisher
- Springer-Verlag
- Publication Date
- Sep 10, 2014
- Volume
- 115
- Issue
- 1
- Pages
- 57–70
- Identifiers
- DOI: 10.1007/s00421-014-2991-x
- Source
- Springer Nature
- Keywords
- License
- Yellow
Abstract
Purpose The aim of this project was to study the impact of pedal rate on breakpoints in muscle oxygenation (deoxy[Hb + Mb] and total[Hb + Mb]) and activation (iEMG and MPF) at high intensities during ramp exercise.MethodsTwelve physically active students performed incremental ramp exercises at 60 rpm, starting either at 50 or 80 W (i.e., 60rpm50 and 60rpm80), and at 100 rpm, starting at 50 W (100rpm50). Pulmonary VO2, muscle activation (iEMG and MPF) and oxygenation were recorded with EMG and NIRS, respectively. IEMG, MPF, deoxy[Hb + Mb] and total[Hb + Mb] were expressed as functions of work rate (WR) and pulmonary VO2 (%VO2peak) and analyzed with double-linear models.ResultsThe breakpoints (BP) of iEMG, MPF, total[Hb + Mb] and deoxy[Hb + Mb] in %VO2peak did not differ among the pedal rate conditions (P > 0.05), whereas the BPs in WR were significantly lower in 100rpm50 compared to 60rpm50 and 60rpm80 (P < 0.01). Across the pedal rate conditions the BP (in %VO2peak) of total[Hb + Mb] (82.7 ± 1.5 %VO2peak) was significantly lower (P < 0.01) compared to the BP in iEMG (84.3 ± 1.7 %VO2peak) and MPF (84.2 ± 1.6 %VO2peak), whereas the BP in deoxy[Hb + Mb] (87.4 ± 1.4 %VO2peak) and respiratory compensation point (89.9 ± 1.8 %VO2peak) were significantly higher (P < 0.01) compared to the BP in total[Hb + Mb], iEMG and MPF. Additionally, the BPs in iEMG, MPF, total[Hb + Mb] and deoxy[Hb + Mb], and the RCP were highly correlated (r > 0.90; P < 0.001).ConclusionsThe present study showed that muscle activation and oxygenation at high intensities during incremental exercise are related to pulmonary VO2 rather than external WR, with a close interrelationship between that muscle activation, oxygenation and pulmonary VO2.