Affordable Access

deepdyve-link
Publisher Website

Impact of the DRY motif and the missing "ionic lock" on constitutive activity and G-protein coupling of the human histamine H4 receptor.

Authors
  • Schneider, Erich H
  • Schnell, David
  • Strasser, Andrea
  • Dove, Stefan
  • Seifert, Roland
Type
Published Article
Journal
Journal of Pharmacology and Experimental Therapeutics
Publisher
American Society for Pharmacology & Experimental Therapeutics
Publication Date
May 01, 2010
Volume
333
Issue
2
Pages
382–392
Identifiers
DOI: 10.1124/jpet.109.163220
PMID: 20106995
Source
Medline
License
Unknown

Abstract

It is assumed that many G protein-coupled receptors (GPCRs) are restrained in an inactive state by the "ionic lock," an interaction between an arginine in transmembrane domain (TM) 3 (R3.50) and a negatively charged residue in TM6 (D/E6.30). In the human histamine H4 receptor (hH4R), alanine is present in position 6.30. To elucidate whether this mutation causes the high constitutive activity of hH4R, we aimed to reconstitute the ionic lock by constructing the A6.30E mutant. The role of R3.50 was investigated by generating hH4R-R3.50A. Both mutants were expressed alone or together with Galpha(i2) and Gbeta1gamma2 in Sf9 cells and characterized in GTPase, 35S-labeled guanosine 5'-[gamma-thio]triphosphate binding, and high-affinity agonist binding assays. Unexpectedly, compared with hH4R, hH4R-A6.30E showed only nonsignificant reduction of constitutive activity and G protein-coupling efficiency. The KD of [3H]histamine was unaltered. By contrast, hH4R-R3.50A did not stimulate G proteins. Thioperamide affinity at hH(4)R-R3.50A was increased by 300 to 400%, whereas histamine affinity was reduced by approximately 50%. A model of the active hH4R state in complex with the Galpha(i2) C terminus was compared with the crystal structures of turkey beta1 and human beta2 adrenoceptors. We conclude that 1) constitutive activity of hH4R is facilitated by the salt bridge D5.69-R6.31 rather than by the missing ionic lock, 2) Y3.60 may form alternative locks in active and inactive GPCR states, 3) R3.50 is crucial for hH4R-G protein coupling, and 4) hH4R-R3.50A represents an inactive state with increased inverse agonist and reduced agonist affinity. Thus, the ionic lock, although stabilizing the inactive rhodopsin state, is not generally important for all class A GPCRs.

Report this publication

Statistics

Seen <100 times