Affordable Access

Access to the full text

Imbalanced Fermi Gases at Unitarity

Authors
  • Gubbels, K. B.
  • Stoof, H. T. C.
Type
Preprint
Publication Date
Oct 07, 2012
Submission Date
May 02, 2012
Identifiers
DOI: 10.1016/j.physrep.2012.11.004
Source
arXiv
License
Yellow
External links

Abstract

We consider imbalanced Fermi gases with strong attractive interactions, for which Cooper-pair formation plays an important role. The two-component mixtures consist either of identical fermionic atoms in two different hyperfine states, or of two different atomic species both occupying only a single hyperfine state. In both cases, the number of atoms for each component is allowed to be different, which leads to a spin imbalance, or spin polarization. Two different atomic species also lead to a mass imbalance. Imbalanced Fermi gases are relevant to condensed-matter physics, nuclear physics and astroparticle physics. They have been studied intensively in recent years, following their experimental realization in ultracold atomic Fermi gases. The experimental control in such a system allows for a systematic study of the equation of state and the phase diagram as a function of temperature, spin polarization and interaction strength. In this review, we discuss the progress in understanding strongly-interacting imbalanced Fermi gases, where a main goal is to describe the results of the highly controlled experiments. We start by discussing Feshbach resonances, after which we treat the imbalanced Fermi gas in mean-field theory to give an introduction to the relevant physics. We encounter several unusual superfluid phases, including phase separation, gapless Sarma superfluidity, and supersolidity. To obtain a more quantitative description of the experiments, we review also more sophisticated techniques, such as diagrammatic methods and the renormalization-group theory. We end the review by discussing two theoretical approaches to treat the inhomogeneous imbalanced Fermi gas, namely the Landau-Ginzburg theory and the Bogoliubov-de Gennes approach.

Report this publication

Statistics

Seen <100 times