Affordable Access

deepdyve-link
Publisher Website

Identifying Disruptions in Intrinsic Brain Dynamics due to Severe Brain Injury

Authors
  • Khanmohammadi, Sina1, 2
  • Kummer, Terrance T.2
  • Ching, ShiNung1, 3, 4
  • 1 Department of Electrical & Systems Engineering, Washington University in St. Louis, St. Louis, MO-63130, USA
  • 2 Department of Neurology, Washington University School of Medicine, St. Louis, MO-63110, USA
  • 3 Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO-63130, USA
  • 4 Division of Biology and Biomedical Science, Washington University in St. Louis, St. Louis, MO-63130, USA
Type
Published Article
Journal
Conference record. Asilomar Conference on Signals, Systems & Computers
Publication Date
Jan 01, 2017
Volume
2017
Pages
344–348
Identifiers
DOI: 10.1109/ACSSC.2017.8335197
PMID: 31896930
PMCID: PMC6939854
Source
PubMed Central
Disciplines
  • Article
License
Unknown
External links

Abstract

Recent studies suggest that disruptions in resting state functional connectivity - a measure of stationary statistical association between brain regions - can be used as an objective marker of brain injury. However, fewer characterizations have examined the disruption of intrinsic brain dynamics after brain injury. Here, we examine this issue using electroencephalographic (EEG) data from brain-injured patients, together with a control analysis wherein we quantify the effect of the injury on the ability of intrinsic event responses to traverse their respective state spaces. More specifically, the lability of intrinsically evoked brain activity was assessed by collapsing three sigma event responses in all channels of the obtained EEG signals into a low-dimensional space. The directional derivative of these responses was then used to assay the extent to which brain activity reaches low-variance subspaces. Our findings suggest that intrinsic dynamics extracted from resting state EEG signals can differentiate various levels of consciousness in severe cases of coma. More specifically the cost of moving from one state to another in the state-space trajectories of the underlying dynamics becomes lower as the level of consciousness of patients deteriorates.

Report this publication

Statistics

Seen <100 times