Affordable Access

Identification of Image Variations based on Equivalence Classes

Publication Date
Infoscience @ EPFL
  • Lts1
External links


This paper presents a fingerprinting method based on equivalence classes. An equivalence class is composed of a reference image and all its variations (or replicas). For each reference image, a decision function is built. The latter determines if a given image belongs to its corresponding equivalence class. This function is built in three steps: synthesis, projection, and analysis. In the first step, the reference image is replicated using different image operators (like JPEG compression, average filtering, etc). During the projection step, the replicas are projected onto a distance space. In the final step, the distance space is analyzed, using machine learning algorithms, and the decision function is built. In this study, three machine learning approaches are compared: orthotope, support vectors machine (SVM), and support vectors data description (SVDD). The orthotope is a computationally efficient ad-hoc method. It consists in building a generalized rectangle in the distance space. The SVM and SVDD are two more general learning algorithms.

There are no comments yet on this publication. Be the first to share your thoughts.


Seen <100 times