Affordable Access

Identification and characterization of the hematopoietic cell-specific enhancer-like element of the mouse hex gene.

Authors
Type
Published Article
Journal
Journal of biochemistry
Publication Date
Volume
135
Issue
2
Pages
259–268
Identifiers
PMID: 15047729
Source
Medline
License
Unknown

Abstract

Hex is one of the homeobox genes suggested to be important for hematopoietic cell differentiation. However, its biological function and mechanism of transcriptional regulation in hematopoietic cells remain elusive. We have identified the regulatory region necessary for transcription of the mouse Hex gene in K562 leukemia cells through transient reporter assays involving various deletion mutants. This region, comprising +775 to +1177 in the first intron, had enhancer-like properties and showed high activity in other hematopoietic cell lines such as U937, HEL, and RAW264.7, but little activity in other Hex-expressing cell lines such as MH(1)C(1) and H4IIE hepatoma cells, suggesting that this region functions as a hematopoietic cell-specific enhancer-like element. Binding site mutation of hematopoietic transcription factors, such as GATAs and c-Myb present in the enhancer-like element, significantly decreased the luciferase reporter gene expression in K562 cells. Electrophoretic mobility shift assays showed that GATA-1, GATA-2, or c-Myb actually binds to three of these putative binding sites, and also suggested that several unidentified factors might interact with the enhancer-like element. Overexpression of GATA-1, GATA-2, or c-Myb stimulated the enhancer-like activity via these three binding sites. Thus, we conclude that Hex expression in hematopoietic cells is mainly regulated by GATA-1, GATA-2, and c-Myb via this intronic enhancer-like element.

Statistics

Seen <100 times